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TECHNICAL MEMORANDUM 

In t roduc t ion  
Many phys ica l  problems are cha rac t e r i zed  by t h e  

presence of a pe r tu rb ing  f o r c e  which can be e i t h e r  cons t an t  or  

varying. The e x a c t  s o l u t i o n  of a simple l i n e a r  o s c i l l a t o r  w i t h  

cons tan t  damping i s  w e l l  known, but  t h a t  w i t h  a r b i t r a r i l y  vary- 

ing  damping i s  unobtainable  without  r e s o r t i n g  t o  numerical 

i n t e g r a t i o n .  For example, t h e  fol lowing d i f f e r e n t i a l  equat ion 

f o r  a l i n e a r  o s c i l l a t o r  w i t h  a per tu rb ing  s i n g u l a r  damping t e r m  

cannot be so lved  e x a c t l y  by p r e s e n t l y  known methods and func t ions  

2 q+ 2 E-+% + W C Y  = O 
dx X 

where E is  a p o s i t i v e  real  parameter much less than  u n i t y  and U: a 

p o s i t i v e  real  cons t an t  of 0(1), I t  w i l l  be shown t h a t  f o r  1x1 > 4, 

Poincare'ls p e r t u r b a t i o n  method of smal l  parameter expansion w i l l  

y i e l d  a first o rde r  homogeneous s o l u t i o n  accu ra t e  t o  0 t" E: e) 
which i s  s i n g u l a r  a s  x + 0 e 

ba t ion  s o l u t i o n  cannot improve t h e  accuracy of t h e  s o l u t i o n  i n  

For 0 < 1x1 < & higher  o r d e r  pe r tu r -  

t h e  neighborhood of t h e  s i n g u l a r  p o i n t  a t  x=O, because of t h e  

s i n g u l a r  n a t u r e  of t h e  pe r tu rb ing  t e r m  i n  Eq. (1) e 

It i s  the  a t tempt  of t h i s  paper t o  show a new methoa of 

ob ta in ing  approximate s o l u t i o n s  f o r  a class of second order 
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and the other solution becomes 

-X X 

where A. and Bo are constants to be determined by the initial 

i' conditions at x 

Substituting y = y1 + y2 into Eq. ( 2 1 ,  we obtain 

1 2 2  
E: 1-I )yl = 0. 1 

( Z '  + 2 2  + W 2  + 2 € l J '  - - C 4 ( 5 )  

Excluding the trivial solution yl=O, we have the condition for 

obtaining the solution of Eq. ( 2 )  as: 

2 2 1  1 2 2  Z '  + z = 'W + ZE1.I' + z." 1-I I C 

which is recognized as a nonlinear ordinary differential equation 

in canonical Riccati form. In fact it is well-known ['I [ 2 1  that any 

second order ordinary linear differential equation can be trans- 

formed into this form. 

In an effort to solve Eq. (6) in terms of ~(x), we first 

try the apparently simplest approximate solution in the form 

Za = a + bu, (7) 

where a and b are constants to be determined. 
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Differentiating and squaring Eq. (7), we obtain 

2 2 2  Y1(zVa + Za) = (bp' + a2 + 2abv + b p )yle 

Comparison of Eqs. (5) and (8) yields the constants 

a = + i w  - c  and 

Thus yl(ZA + Za) 2 = y1(-wC 2 1  + F E U '  + -E 1 2 2  1-1 ) ?  E, 4 

where 

E = + - iwcEvyl 

(9) 

is an error term which appears in Eq. (2) because of the approx- 

imate nature of Eq. ( 7 )  as a solution of Eq. (6) or ( 2 ) e  It is 

important to note that the error term as shown in Eq. (loa) is 

imaginary and is simply proportional to the product of the per- 

turbing damping term and the undamped frequency of the original 

differential equation (2). The significance of this error term 

being imaginary will be exploited later. Substituting Eq. (9) 

into Eqs. (7) I ( 3 )  and ( 4 ) ,  we obtain the approximate solution 

of Eq. (2) as 

It turns out that Eq. (11) as an approximate solution to Eq. ( 2 )  

has a very simple intuitive interpretation. The first solution 

y1 is simply a solution, in complex form, of Eq. (2) with the 
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neglected and the second solution y is obtained by 

as if y were the exact solution of Eq. (2). A 
2 

1 
measure of the accuracy of Eq. (11) can be first tested by two 

extreme cases; namely, (i) when E or ~ ( x )  approaches zero, 

Eq. (11) reduces to the exact solution of a linear oscillator, 

(ii) when w approaches zero, Eq. (11) reduces to the exact 

solution of y" + ~p(x)y' = 0. Accordingly the solution in the 
C 

form of Eq. (11) is expected to be very accurate even in the 

middle region (composite region) where E ~ = W  and an example to 

be shown later indicates that this is indeed true. 
C 

Since, in general, we have no way of obtaining the 

exact solution of Eq. ( 2 ) ,  it is very difficult to obtain even 

the error bound of the approximate solution in analytic form. 

The numerical accuracy of Eq. (11) can be obtained for any 

particular p(x), however, by comparing it with the solution 

achieved by numerically integrating the differential equation (2). 

It is reasonable to assume that the error term f iuCEpl of Eq. 

(loa) might give us an indirect measure of the accuracy of the 

approximate solution yo of Eq. The ratio of the error term 

to the exact ( Z ' + Z  ) provides relative comparison of the accuracy 

(11). 
2 

of the approximate solution in the region of interest where p(x) 

approaches a singularity, Since the error term is imaginary and 

the exact ( Z ' + Z  ) is real due to the specification that wc, E ,  

and ~ ( x )  are all real quantities, the relative error can be 

2 

expressed a s :  
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1 1 
2 1  - (Z' + z 2 ) 2;- 

E = -  = / 1  + 
r Z' + z 2  I 

L 

Equation (12) assumes the following simple forms: 

2 
w 
C Er - 

ElJ  
- 

2 2  when w 2  > > E  LI and E U ' ~  C 

2 when E * u * > > w  and E U ' ,  
C 

We note from Eqs.(l3) that the errors in two separated regions 

could be of the same order of magnitude 
w 

e Fulfillment of such a con- E d X 1  - - * C and "3 
E U  (x,) 

centered around x1 

when, for example, 

dition may lead to the fact that errors could remain fairly constant 
w 
C 

over the region between x1 and x2" 

in a numerical example. 

This will be shown to be true 

Another indirect error magnitude estimate can be made by 

comparing the error term E = iwCEpy1 of Eg. (loa) with that obtained 

by Poincare's perturbation method. The first order perturbation 
. 
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2 ( 2 )  has an error of 0 ( E  y2nd) and has the form solution of Eq. 

-X 

are, respectively, the zeroth, first, 

and second order solutionsr and yOth= CSin wc(x-xO) with 

C and xo as constants. 

2nd and y 0th' '1st where y 

Substituting Eq. (14) into the differential equation (21 yields 

an error term (due to the first order perturbation solution): 

Sin wc(x-<)dS (15) 

1 is a real quantity since the terms involved are specified 

to be real. To compare the error term of Eq. (loa) with that of 

Eq. (15), it will be convenient to specify the general functional - I form of the singular coefficient u (x) a Let u (x)= - and x vary 
Xn 

in the region where 0 c 1x1 5 E, then from Eq. (loa) we have, as x 
approaches the singular point X = O I  

W E  iwcx I c E = iw Eve -i- I 

Xn c 

where n is an integer. 
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From Eq.(15) we have for the first order perturbation 

solution, 

It can be shown that €or the kth order perturbation solution 

k+l ' : W Ek+l1nx 
' lnx ' + o i 'nx C 

Pk X ' X  . x  X 
. (16a) W E  

C 
E A  n 1 '  1 n+k-2 1 1 n+k-3 1 1  [ 2n+k-2 1 

In the region where 0 < < / X I  5 E~ E is always smaller than E 

Accordingly it appears to be that in some cases the present approximate 

solution is more accurate than Poincarg's perturbation solution 

as ~ ( x )  approaches its apparent singular point. Using the same 

relative error criterion used in Eq. (12), we obtain €or the 

perturbation method 

Pk e 

i %E k+llnx - 4 z l  + z 2 ) 
2n+k-2 i / E = o  

pkr X I I 

Comparison of Eqs. (12) and (17) indicates that the region in 

hich the accuracy of the present approximate solution is better 

than that of the perturbation solution can be extended from the 

I L E ~ B  the region where 1x1 is slightly > E e  
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At this point it is appropriate to ask the question what 

is the physical meaning and-significance of the error term 

iocEvyl being imaginary? It is evident that if we had been able 

to find the exact solution of Eq. (6), the exact (2' + Z ) would 2 

be pure real due to the fact that w ~ , E ~  and p are all specified 

to be real quantities. The presence of the pure imaginary error 

term thus gives a measure of error in Za. 

error E in terms of the exact (Z' + 2 ) for the case of a small 

imaginary error term should be much less than that for the case 

However, the percentage 
2 

r 

of a real error term of the same magnitude. In fact we have for 

the real error term case - - which is usually much 

less than unity and is accordingly orders of magnitude larger 

than 11 
have a small error term which is imaginary. 

WCEV 

Z' + z 
WCEV 1 2 ' of Eq. (12). This is why it is important to 

21 2 !zg + z 

Having conceptually understood the problem, we are now 

in a position to be able to improve the accuracy of the approximate 

solutio,& by letting Za = Zar + iZai and then adjusting Zar and Zai 

such that the magnitude I (Zar 2 + Zai 2 )1'21 may approach closer to the 

exact Z, When1 (Zar 2 + Zai = Z, we have the exact solution-to- 

which is the phase -1 'ai gether with the phase information 0 = tan - 
'ar 

delay or advance with respect to the unperturbed linear oscillator 

case. To state the problem more precisely, we should adjust Zar 
2 and Zai in such a way that the magnitude of (ZA + Za) approaches 

z; + za should lie + -4 E p I i.e., 'W 9 - E L I *  that of Z 8  + Z2 = 

as close as possible (a) to the circle of radius equal to (Zv + Z ) 

and (b) to the real axis (Z9 + Z ) 

1 2 2  2 1  
c 2  

2 

2 
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According to the arguments of the preceding paragraph 

we can improve the solution accuracy of Eq. (11)# i.e., Eq. (7), 

by reasoning that the constants a and b in Eq. (7) should have 

such values that Eq. ( 8 )  would have, in addition to the imaginary part 

of the error term, a real part of the error term with a sign.opposite 

to (Zl + Z ) and with a magnitude much smaller than the imaginary 

part. Let both constants a and b be complex, then 

2 

Differentiating and squaring Eq. (18) yields 

ZA + Zf = (br + ibi)pl + (ar 2 - ai) 2 + i 2a,ai 

+ 2[(arbr - a.b.) + i(a,bi + aibr)lp 
1 1  

Comparing Eq. (19) with Eq. (6), we have the following equations 

2 
c f  a2 - a2 = w r i 

1 (br + ibi)p' = 2 E P '  I 

(br 2 + bi 2 + i 2b,bi)p2 = 1 2 2  E p , 

i 2arai = 0 

2[(arbr - a.b.) + i(arbi + aibr)3p = 0 e 
1 1  
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The system of Eqs. (20) is overdetermined since there are only 

four constants to be determined by eight equations. Guided by 

the reasoning mentioned in the preceding paragraph, we can choose 

the constants by reducing or minimizing the error magnitude in 

Eq. (10) in the region of interest. The simplest and best choice 

of these constants appears to be: 

I c f  a = O  ai = +w r 

where k is an adjusting parameter, varying in the range approx- 

imately between 0 and +1, to be explained later. Substituting 

Eq. (21) into Eq. (lo), we obtain 

2 = ( 2 '  + Z ) - F + iFi, r 

where 

= ke 2 u(wc + ke 2 U )  and Fi = w C € p  + kE 2 ( € 1 - 1 ~  + 1-1'). (22a) Fr a 
Equation (22) reduces to Eq. (10) when bi = 0. Note that the real 

part of the error is in fact much smaller than the imaginary part 

of the error by a factor of about E. The relative error then is 
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1 
(Z* + Z2  - Fr)2 + F2] - (2s + 2 2 )  

1 E =  
r z o  + Z2 

(23) 
r 
! 

2 2 Fr -I- Fi 
Fr - - 1 - IF2 + F: - 2Fr(Z8 + 2 - - - 

2 r  
J 

2 ( 2 *  + 2 ) Z @  + Z2 2 ( Z i  4. 9)  - 

where both Fr and Fi are functions of the parameters k and E .  

Equation (23) reduces to Eq. (12) when k=O, i.e., when bi=O. It 

is 

if 

an 

evident from Eq. (23) that the relative error % will vanish 
F This implies that 

exact solution can be obtained at the point xe, around which the 

2 2 
r r + F: = 2F (Z8 i- Z ) at certain point xee 

error of the approximate solution changes sign. For a prescribed 

xe where an exact solution is most desired, there is always a 

corresponding value of the parameter k which can be obtained by 

setting Eq. (23) equal to zero: i-e., 

ce E is much le s than unity a d we close to unity E 
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For a given p(xe), Eq. (25) is a quadratic equation in k, 

Now substituting Eq. (21) into Eqs. ( 7 ) ,  ( 3 ) ,  and ( 4 ) ,  

we obtain the general approximate solution of Eq. (2) as 

which reduces to Eq. (11) by setting k=O. 

Note that Eq. (26 )  is written in such a way'that we 

require the coefficient of the dominant term of the function p ( x )  

to be positive unity, i.e., the sign and the coefficient of the 

dominant term of p(x) must be absorbed into E. 

In passing we mention that the constants in the over- 

determined system of Eq. (20) can also be optimally determined 

in the region of interest in the least squares sense whenever 

the functional form of p(x) is given. 

Comparison Examples 

In the preceding section we have argued qualitatively 

that the approximate solution in the form of Eq. (26) should be 

more accurate than the perturbation solution of Eq. (2) in the 

region where there is a singular point. Here we attempt to show 

quantitatively the numerical accuracy of the solution of Eqs. (11) 
1 and (26) for a specific differential equation with 1-1 = 7' i.e., 
X 

2 
y" + E 2' l , + , U  y = o ,  C 

.I A 
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where we let wc = 1 and E = 10 - 4  e The approximate solution of 
E q .  ( 2 7 )  via E q s .  (11) and ( 2 6 )  becomes, respectively, 

E rx -i2w x - 
i 

iw x' 
Yo = e .ex dxi = ykz0 , 

or 

where Ak = y(xi)e 

and y(x.) and y' (xi) are prescribed initial conditions. 
1 

Note that Eq. ( 2 8 )  can be obtained from Eq. (29) by setting k=O. 

Comparison of solutions of E q s .  ( 2 8 )  and ( 2 9 )  and the 1st order 

Poincare solution [Eq. (14)l with the numerically integrated 
. 

solution of Eq. (27) should give us a clear picture of the accuracy 
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of the solutions in the form of Eq. ( 2 8 )  or (29). Before carrying 

out the actual numerical comparisons, we shall first obtain the 

Poincare solution of Eq. ( 2 7 ) .  The formal Poiqcare solution 
. , 

has the form 

together with the initial boundary conditions 

where yk = I :  i -2 l. YL-1 (S)Sinw,(x-S)dS, k=lst, 2nd, 333, = . e 

c LX. E 

’- 1 r -, 
= c - - Sinw (x-x ) + Sinwc(x+xo- 2xi)j Ylst 2xi L C 0 

- I Sin2wcxdx 
X + wcSinwc (x+xo) 

-X i 

X 

- 1 Cos2wcxdx 0 (lnx) , + wccoswc (x+xo) X 
>’ i ’X 



.x 

- 16 - 

. lnx = O(+ I 

X Y3rd (31~) . lnx = c ( - + ,  . . . . . .  
X Y4th 

It is evident that the explicit evaluation of y2nd or higher order 

solution is extremely complex and usually impractical. Since 

it requires many lines to write down the expression for Y2nd# we 

indicate instead the order of magnitude as shown in Eq. (31b). 

Thus Eq. (30) becomes 

2 lnx 3 lnx y = CSinoc(x-xo) + ~ ~ ( l n x )  + E ~ ( j i - )  + E O ( T )  + e e (32) 
X 

Equation (32) indicates that the inclusion of a finite number of 

higher order solutions does not improve the accuracy of the 

solution when I X I  I &. This is so because of the presence of the 

apparent singular perturbing term ~ y '  in Eq. (27). E 

X 
To carry out the actual numerical comparison, we use 

the first order Poincard solution, i.e., the first two terms of 

Eq. (32) where we arbitrarily let c=1 and xo=-2.4. Since we are 

interested in the behaviour of the solution near the singular 

point x=Of we let the integration limits vary from the initial 

limit x=-0.3 to the upper limit x+O. The initial boundary con- 

ditions for Eqs. (28) and (29) are 
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y(xi) = CSinwc(x-xo) = Sin 2,l 

and y s  (Xi) = cwccosw C (x-xo) = cos 2.1 

All computations are programmed in double precision, and the 

required accuracy of the numerical integration solution of Eq. (27) 

is set at Table I shows the numerical values (together 

with phase information) of the solutions obtained by the three 

different methods and Fig. 1 shows the difference between the 

numerically integrated solution and the solutions obtained by 

other methods. Since the solution value varies between 0.86 and 

0.68, Fig. 1 practically represents the relative errors also. 

Fig. 2 shows, for various values of k in Eq. (27), the phase 

advance information with respect to the undamped oscillatory 

motion. In Fig. 1 the Poincare perturbation solution is computed 
. 

only up to x = , since the first order solution is no 
longer valid for x > - ~ O - ~  as seen from Eq. (32). We also note 

that the error of the first order perturbation solution indeed 

increases according to E O ( 7 ) .  Fig. 1 indicates that the solu- 

tions of the present method are a few orders of magnitude more 

2 lnx 

accurate than the first order perturbation solution as x approaches 

the apparent singular point. In fact the solution is nonsingular 

as x approaches zero from negative values. Errors in the region 
-1 from x = -10 to x-t-0 are practically uniform for both k=O and 

k=l. When k=O the solution is slightly too large; when k = l  it 

is slightly too small. For a particular value of ke in between 
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0 and 1, the solution error changes sign at a point x (cor- 

responding to ke) where an exact solution is located as pre- 
e 

Eq. (25). Accordingly, there is an optimum value 

of k which minimizes errors in the region near x=O. By vary- 

ing k ,  the optimum value appears to be near 0.8315 as seen from 

Fig. 1. At this value of k, the solution not only gives the 

most accurate absolute value but also the most correct phase 

advance information as seen from Fig. 2 .  In most physical 

problems, except in space trajectory studies, such an extreme 

accuracy is not necessary and there is no need to optimize the 

value of k. Accordingly it is recommended that one should set 

k = l  in Eq. (26) to obtain a simple yet very accurate analytic 

solution. 

Having shown the extreme numerical accuracy of Eq. 

(29) as an approximate solution of the differential equation 

(27) in the region including the singular point, we ask the 

question how sensitive is the accuracy of the solution to the 

magnitude of the perturbing parameter E ?  Again we cannot find 

an answer in analytic form. For each value of E ,  howeverp the 

difference between the exact solution obtained by numerically 

integrating Eq. (27) and the approximate solution of Eq. (29) 

should give us some insight, For this comparisonp we shall use 

the approximate solution in the form of Eq. (29) with k = l .  
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- 4  This  is  done f o r  va lues  of E = 1 0  I 

and is  shown i n  Fig.  3 which i s  p l o t t e d  f r o m  t h e  computed 

r e s u l t s  shown i n  T a b l e  11. From Fig.  3 we can conclude t h a t  

t h e  error of t h e  approximate s o l u t i o n  of Eq. ( 2 9 )  i s  roughly 

p ropor t iona l  t o  E . I t  i s  also seen t h a t  f o r  each va lue  of E 

t h e  errors remain f a i r l y  cons t an t  as x approaches zero.  

l o s1  and 1, 

2 

Turning ou r  a t t e n t i o n  back t o  Eq. (27), w e  no te  t h a t  

it has an i r r e g u l a r  s i n g u l a r i t y  a t  x=O i n  t he  c o e f f i c i e n t  of y ' .  

Accordingly,one of the s o l u t i o n s  of Eq .  (27) is a n a l y t i c  and t h e  

second s o l u t i o n  has an e s s e n t i a l  ~ i n g u l a r i t y ' ~ '  a t  x=O. This  i s  

i n  fact  w h a t  our  approximate s o l u t i o n  i n  t h e  f o r m  of Eq. ( 2 9 )  

shows for  the  case p ( x ) =  x . There is no s i n g u l a r i t y  i n  the  

s o l u t i o n  as x approaches zero  from negat ive  va lues  as mentioned 

ear l ier ,  bu t  the e s s e n t i a l  s i n g u l a r i t y  i n  t h e  s o l u t i o n  appears 

as x approaches ze ro  from p o s i t i v e  va lues ,  

-2 

W e  have shown t h a t  Eq. ( 2 9 )  i s  an approximate s o l u t i o n  

of t he  d i f f e r e n t i a l  equat ion i n  t h e  f o r m  of Eq. (l), y e t  w e  

cannot show t h e  accuracy estimate of t he  approximate s o l u t i o n  

f o r  t he  gene ra l  case of IJ (x)=x . For the  case u (x)=x I w e  

have shown t h e  approximate s o l u t i o n  i s  accura t e  t o  O ( E  as 

x+O- f r o m  nega t ive  va lues ,  by comparing it w i t h  t h e  numerically 

i n t e g r a t e d  s o l u t i o n .  T o  ob ta in  t h e  accuracy of t h e  approximate 

s o l u t i o n  fo r  o ther  cases, it would be necessary t o  have a 

s imilar  numerical  comparison, 

-n - 2  

2 
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TX 

-E vdx 
Inspection of Eq. (26) indicates that e 3 C i  is the 

controlling factor in the integrand since the remaining factors in 

the equation are either constants or phase factors. As x approaches 

X 
'E : , vdx 

the singular point of ~(x), e 

or infinity, depending on (a) the sign of x in the region of 
'Xi will likewise approach zero 

interest, (b) the sign of E ~ ( x ) ,  and (c) the fact whether v ( X I  
is even or odd. In general, we can state that when 

X 
-E, udx 
e x  approaches zero as x approaches the singular point the i 

'- x 
- E  vdx 

approximate solution approaches a constant. When e 

approaches infinity as x approaches the singular point, the 
i 

approximate solution and its error both become singular. 

In passing we mention that Eq. (1) with a forcing term 

added in fact can be derived from a linearized restricted three- 

body problem describing a body of negligible mass moving under 

the influence of the sun and aiming to impact a fictious point 

mass planet. In this case y represents the reciprocal of the 

distance between thesun and the spacecraft and x represents the 

angle between the sun-planet line and the sun-spacecraft line. 
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Phys ica l ly  it i s  q u i t e  clear t h a t  y must remain f i n i t e  as 

x + 0 from negat ive  va lues  and y does n o t  have any phys ica l  

meaning a f t e r  the impact,  i .e . ,  mathematically Eq. (1) does 

n o t  r e p r e s e n t  t h e  p a r t i c u l a r  phys i ca l  problem i n  the p o s i t i v e  

x region.  

Conclusions 

I t  has  been shown by h e u r i s t i c  arguments t h a t  a 

p o s s i b l e  approximate s o l u t i o n  t o  t h e  d i f f e r e n t i a l  equat ion  

( 2 )  has t h e  form of Eq. (26). Since t k e  exac t  s o l u t i o n  of 

Eq. ( 2 )  i s  n o t  a v a i l a b l e ,  it is i n  g e n e r a l  very d i f f i c u l t  

t o  o b t a i n  an a n a l y t i c  express ion  f o r  the e r r o r  estimate of 

t h e  approximate s o l u t i o n .  For t h e  case p ( x )  = x , however, -2  

w e  have shown t h a t  the approximate s o l u t i o n  i s  accura t e  t o  

O ( E ? - ) ,  as x + 0- from nega t ive  va lues ,  by comparing it wi th  

the numerical ly  i n t e g r a t e d  s o l u t i o n .  The approximate 

s o l u t i o n  is  o r d e r s  of magnitude more accu ra t e  than Po inca re ' s  
c 

f i r s t  o rder  p e r t u r b a t i o n  s o l u t i o n  i n  t h e  region nea r  t h e  

s i n g u l a r  p o i n t  of p (x)  . 
T h e  approximate a n a l y t i c  s o l u t i o n  of the p r e s e n t  

method can y i e l d  s i g n i f i c a n t  mathematical  and phys ica l  i n s i g h t  

t o  a c t u a l  problems, 
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TABLE I MiERlCAL ~ O M ~ A ~ ~ S O N  OF SOL 

x 
-3 x 10-1 

-2 x 10-1 

-1 x 10-1 

-1 x 10-2 

-I 

-I 10-5 

-1 x 10-6 

-I 30-7 

-3  x 

x 
-3 x 10- 

-2 x 10-1 

-1 x 10-1 

-1 x 10-2 

-1 x 10-3 

-I 

-I 10-5 

-1 x 10-6 

-I  IO-^ 

YN B YP 
0.863,209,366,648 0.863,209,366,648 

0.808,500,274,368 0.808,500,274,562 

0.745,730,236,130 

0.682,963,384,873 0.682,963,644.168 

0.676,522,149,188 0.676,525.553,550 

0.676,000,129,830 0.676,031,393,989 

0,675,989,168,251 

0,675,989,168,220 

0.675,989,168,219 

Yk=0 
7 0.863,209,366,649 

0.808,500,274,383 

0.745,730,232,162 

0.682,963,395,159 

0.676,522,174,303 

0.676,008,165,95 1 

0.675,989,206.029 

0.675,989,206,000 

0.675,989,205,999 

yk=l 
0.863,209,366,649 7 

0.808,500,273,775 

0.745,730,228,663 

0.682,963,377,086 

0.675,522,141,219 

0.676,000,122,023 ,4.22' x 10- 

0.675,989,160,619 

0.675,989,160,591 

0.675,989,160,590 

'NI - yP 

0 

-1.94 x 10-10 

-4.46  IO-^ 
-2.59 x ?O-7 

-3.40 x 10-6 

-3.13 x 1K5 

-8.74 1 0 - l ~  

-1.51 x IO-'' 

-4.90 x IO-'' 

-1.03 x 

-2.57 x 10-' 

-3.61 x 

-3.78 x 1W8 

-3.78 x 

8.74 x 

5.93 x 10-10 

3.01 

7.79 10-9 

7.97 

7.81  IO-^ 
7.63  IO-^ 
7.63 

-3.78 x IO-' 7.63 10-9 



TABLE I !  NUMERICAL COMPARISON OF SOLUTIONS 

x c =  IO-^ c = 10-3 c 3 10-2 c = I  

y= 0.863,209,367 

0.808,500,274 

0.745,730,229 

0.682,963,377 

0.676,522,141 

0.676,000,122 

0.675,989,161 

0.675,989,161 

0.863,209,367 

0.808,535,032 

0.745,954,706 

0.684,381,156 

0.679,156,911 

0.679,046,496 
I .  

0.863,209,367 

0.808,875,614 

0.748,134,341 

0.696,577,684 

0.695,413,136 

0.695,413,133 
,, 

0.863,209,367 

0.81 1,604,511 

0.764,482,024 

0.747.71 2,320 

0.747.71 2,268 
,l 

0.863,209,367 

0.726,263,869 

0.708,624,475 

0.705,580,025 ., 

-0.3 

-0.2 

-10-1 

-10-2 

-10-3 

-70-4 

-1 0-6 

,, 

I ,  I ,  

I ,  

yNi= 0.863,209,367 

0.808,500,274 

0.745,730,232 

0682,963,385 

O.676,522,149 

0.676,000,130 

0.675,989,168 

0.675,989,168 

0.863,209,367 

0.808,535,092 

0.745,955,006 

0.684,381,924 

0.679,157,691 

0.679,047,258 .. 

02363,209,367 

0.808,881,507 

0,748,163,625 

0.696,644,755 

0.695,478,970 

0.695,478,939 
I, 

0.863,209,367 

0.812,176,793 

0.766,848,989 

0.750.960.965 

0.750,957,898 

0.750,957,896 
,r 

0.863,209,367 

0333,280,389 

0.827,964,623 

0327,626,744 

0.827,626,464 
I ,  

-0.3 

-0.2 

-10-1 

-10-2 

-10-3 

-10-6 I, ,, 

YN1-Y’ 

0.059 x 

0.301 x 

0.778 x 

0.797 x 

0.781 x 

0.763 x 
,, 

0 

0.060 x 

0.300 x 
0.768 x 

0.780 x IO-‘ 

0.762 x 1W6 

0.761 x 
#I 

0 

0.059  IO-^ 
0.293  IO-^ 
0.671 

0.658  IO-^ 
,, 

0 

0.051 x 

0.237 x 

0.325 x 
.I 

0 

0.107 

0.1 19 
,, 

I I  

-0.3 

-0.2 

-10-1 

-10-2 

- IO3  
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FIGURE 1 - COMPARISON OF SOLUTION MAGNITUDE DIFFERENCES. 
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FIGURE 2 - PHASE INFORMATION. 



10 

10 -6 

a0 -7 

I I I I I 1 1 1  I I I I I l l 1  

1 10 -I 1 

FlGURE 3 - EFFECT OF E ON THE ACCURACY OF THE APPROXIMATE SOLUTION 




